Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

A novel one-dimensional coordination polymer with Cd^{2+} and diethylenetriaminepentaacetic acid

Filipe A. Almeida Paz, Andrew D. Bond, Yaroslav Z. Khimyak and Jacek Klinowski*

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
Correspondence e-mail: jk18@cam.ac.uk

Received 4 October 2002
Accepted 1 November 2002
Online 26 November 2002
catena-Poly[[[bis[diaqua(4,4'-bipyridine)cadmium(II)]-bis[μ ($N^{\prime \prime}$-carboxymethyldiethylenetriamine- $N, N, N^{\prime}, N^{\prime \prime}$-tetraace-tato)cadmium(II)]]- $\mu-4,4^{\prime}$-bipyridine] tetradecahydrate], $\left[\mathrm{Cd}_{4}\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{10}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 14 \mathrm{H}_{2} \mathrm{O}$ or $\left[\mathrm{Cd}_{4}(\mathrm{HD}-\right.$ $\left.\mathrm{TPA})_{2}(\mathrm{BPY})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 14 \mathrm{H}_{2} \mathrm{O}$, where BPY is $4,4^{\prime}$-bipyridine and HDTPA ${ }^{4-}$ is $N^{\prime \prime}$-carboxymethyldiethylenetriamine- $N, N,-$ $N^{\prime}, N^{\prime \prime}$-tetraacetate, consists of a one-dimensional coordination polymer formed from a secondary building unit which comprises four Cd centres. The chain structure of the title compound was obtained by the use of a multidentate organic ligand, $\quad N, N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-diethylenetriaminepentaacetic acid (H_{5} DTPA), which forms multiple chelate rings with the Cd metal centres. An extended network is formed via hydrogen bonds.

Comment

Crystal engineering of n-dimensional coordination polymers is an active field of research, exemplified by several recent reports of novel compounds with interesting architectures and a variety of promising applications (Chui et al., 1999; Kagan et al., 1999; Seo et al., 2000; Tabellion et al., 2001). 4,4'-Bipyridine (BPY) has been repeatedly and successfully employed in the syntheses of one-, two- and three-dimensional coordination polymers (Tao et al., 2000; Batten \& Robson, 1998; Janiak, 1997; Zaworotko, 2001). HDTPA $^{4-}$ is a flexible organic ligand with several donor atoms able to coordinate to one or more metal centres [see, for example, Seccombe et al. (1975) and Finnen et al. (1991)]. The formation of chelate complexes of HDTPA $^{4-}$ leads both to stable structures and to the elimination of available metal coordination sites. HDTPA ${ }^{4-}$ appears, therefore, to be a good ligand for controlling the dimensionality of coordination polymers. We believe the title compound, (I), to be the first example of such a material, in which HDTPA ${ }^{4-}$ directs the formation of a one-dimensional coordination polymer, with BPY acting as a spacer between the metal centres.

The crystal structure of (I) contains two crystallographically independent heptacoordinated Cd centres in distorted pentagonal-bipyramidal geometries (Fig. 1 and Table 1). The coordination sphere of atom Cd1 is completely occupied by the donor atoms (N and O) of one HDTPA ${ }^{4-}$ ligand, which forms six five-membered chelate rings. The C31 carboxylate group establishes a bridge between atoms Cd 1 and Cd 2 $[\mathrm{Cd} 1 \cdots \mathrm{Cd} 2=4.6757$ (3) \AA]. Atom Cd2 has two BPY ligands trans-coordinated in the axial sites and two water molecules (O 21 and O 22) in equatorial positions.

Compound (I) can be considered to arise from selfassembly of a tetrametallic secondary building unit (SBU) into a metal-organic chain along the crystallographic b direction (Fig. 2). The SBUs are connected by BPY molecules which adopt two different coordination modes. A bridging bidentate BPY molecule (N51/C51-C55) establishes a coordinative connection between two Cd2 metal centres across a centre of symmetry $\left[\mathrm{Cd} 2 \cdots \mathrm{Cd} 2{ }^{\mathrm{i}}=11.6715\right.$ (4) \AA; symmetry code: (i) $1-x$,

Figure 1
A view of the asymmetric unit of (I), showing displacement ellipsoids at the 50% probability level. The symmetry-generated parts of one BPY unit are also shown [symmetry code: (i) $1-x,-y, 1-z$]. H atoms have been omitted for clarity.

Figure 2
A perspective view of the one-dimensional coordination polymer of (I), made up from repetition of the tetrametallic secondary building unit along the b direction. H atoms have been omitted for clarity.
$-y, 1-z]$, and a monodentate BPY molecule has its uncoordinated 4-pyridyl group (N42) hydrogen bonded to the coordinated water molecule (O22) of an adjacent SBU (Table 2).

The steric influence of two HDTPA ${ }^{4-}$ ligands in the external part of the Cd1 SBU appears to direct the growth of the coordination polymer only through the core of the same

Figure 3
The hydrogen-bond network between two adjacent one-dimensional polymers in (I).

SBU (BPY being coordinated only to atom Cd2). Furthermore, the occupation of all the coordination sites around Cd1 by the HDTPA ${ }^{4-}$ ligand prevents coordinative bridging between adjacent chains. Bridges between chains are established by an extensive hydrogen-bond network via seven water molecules included within the lattice (Fig. 3 and Table 2).

Experimental

All chemicals were obtained from commercial sources and used as received. To a solution of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.325 \mathrm{~g}$, Aldrich) in distilled water $(6.15 \mathrm{~g}), 4,4^{\prime}$-bipyridyl (0.160 g , Aldrich), $N, N, N^{\prime},-$ $N^{\prime \prime}, N^{\prime \prime}$-diethylenetriaminepentaacetic acid (0.399 g , Aldrich) and
triethylamine (0.416 g , Avocado) were added, and the resulting mixture stirred for 1 h at ambient temperature. The suspension was transferred to a Parr stainless steel Teflon-lined autoclave (21 ml) and placed inside a preheated oven at 418 K for a period of 24 h . The autoclave was then cooled slowly to 298 K at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$ before being opened. The resulting colourless solution was allowed to evaporate slowly at ambient temperature over a period of one week, yielding colourless crystals of the title compound.

Crystal data

$\left[\mathrm{Cd}_{4}\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{10}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right.$ -
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 14 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=2021.12$
Triclinic, $P \overline{1}$
$a=10.2785(2) \AA$
$b=12.6674$ (3) \AA
$c=16.2495$ (5) A
$\alpha=71.693(2)^{\circ}$
$\beta=89.362(2)^{\circ}$
$\gamma=76.317(2)^{\circ}$
$V=1947.05(9) \AA^{3}$
$Z=1$
$D_{x}=1.724 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 10839 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=1.18 \mathrm{~mm}^{-1}$
$T=180$ (2) K
Block, colourless
$0.28 \times 0.23 \times 0.18 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer
Thin-slice ω and φ scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.731, T_{\text {max }}=0.809$
19997 measured reflections
8787 independent reflections
7885 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-15 \rightarrow 16$
$l=-18 \rightarrow 21$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0279 P)^{2}\right. \\
& \quad+1.7516 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.74 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.98 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Cd1-O331	2.2571 (17)	Cd2-N41	2.2822 (19)
Cd1-O341	2.2720 (17)	Cd2-N51	2.2896 (18)
Cd1-O312	2.3363 (16)	Cd2-O21	2.3530 (15)
Cd1-O351	2.3679 (17)	$\mathrm{Cd} 2-\mathrm{O} 22$	2.3561 (18)
Cd1-N32	2.432 (2)	$\mathrm{Cd} 2-\mathrm{O} 311{ }^{\text {i }}$	2.3822 (15)
Cd1-N33	2.4650 (19)	Cd2-O312	2.5221 (16)
Cd1-N31	2.4940 (18)	Cd2-O311	2.5363 (16)
O331-Cd1-O312	96.41 (6)	N41-Cd2-O21	91.04 (6)
O341-Cd1-O312	98.42 (6)	N51-Cd2-O21	92.44 (6)
O331-Cd1-O351	93.32 (7)	N41-Cd2-O22	93.31 (7)
O341-Cd1-O351	89.70 (6)	N51-Cd2-O22	91.56 (7)
O312-Cd1-O351	77.66 (5)	$\mathrm{O} 21-\mathrm{Cd} 2-\mathrm{O} 22$	72.32 (6)
O331-Cd1-N32	94.37 (7)	$\mathrm{N} 41-\mathrm{Cd} 2-\mathrm{O} 311^{\text {i }}$	89.23 (6)
O341-Cd1-N32	73.91 (6)	N51-Cd2-O311 ${ }^{\text {i }}$	88.88 (6)
O331-Cd1-N33	74.30 (6)	$\mathrm{O} 22-\mathrm{Cd} 2-\mathrm{O} 311^{\text {i }}$	87.53 (6)
O341-Cd1-N33	93.47 (7)	N41-Cd2-O312	90.19 (6)
O351-Cd1-N33	68.11 (6)	N51-Cd2-O312	86.48 (6)
N32-Cd1-N33	74.37 (6)	O21-Cd2-O312	80.03 (5)
O331-Cd1-N31	88.64 (6)	N41-Cd2-O311	84.44 (6)
O341-Cd1-N31	96.67 (6)	N51-Cd2-O311	90.26 (6)
O312-Cd1-N31	69.55 (6)	O311 ${ }^{\text {- }}$ Cd2-O311	68.94 (6)
N32-Cd1-N31	74.41 (6)	O312-Cd2-O311	51.46 (5)

Symmetry code: (i) $1-x,-1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 21-\mathrm{H} 21 A \cdots \mathrm{~N} 42^{\mathrm{i}}$	0.85 (1)	1.93 (1)	2.772 (3)	178 (3)
$\mathrm{O} 21-\mathrm{H} 21 B \cdots \mathrm{O} 351$	0.85 (1)	1.82 (1)	2.663 (2)	178 (2)
$\mathrm{O} 22-\mathrm{H} 22 A \cdots \mathrm{O} 52^{\text {ii }}$	0.85 (1)	1.92 (1)	2.749 (3)	167 (3)
$\mathrm{O} 22-\mathrm{H} 22 \mathrm{~B} \cdots \mathrm{O} 21^{\text {ii }}$	0.83 (1)	2.12 (2)	2.893 (2)	155 (3)
O322-H322 . $\mathrm{O} 4 W$	0.84	1.63	2.448 (3)	163
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 332$	0.84 (3)	1.94 (3)	2.777 (3)	172 (4)
$\mathrm{O} 1 W-\mathrm{H} 18 \cdots \mathrm{O} 2 W$	0.84 (3)	1.96 (2)	2.755 (3)	158 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 A \cdots \mathrm{O} 3 W$	0.83 (3)	1.92 (2)	2.744 (3)	175 (4)
$\mathrm{O} 2 W-\mathrm{H} 2 B \cdots \mathrm{O} 341^{\text {i }}$	0.84 (3)	2.12 (2)	2.916 (3)	159 (3)
$\mathrm{O} 3 W-\mathrm{H} 3 A \cdots \mathrm{O} 352^{\text {iii }}$	0.85 (3)	1.90 (3)	2.734 (3)	167 (3)
$\mathrm{O} 3 W-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 342^{\text {iv }}$	0.844 (10)	1.91 (2)	2.745 (3)	170 (3)
$\mathrm{O} 4 W-\mathrm{H} 4 A \cdots \mathrm{O} 332^{\text {v }}$	0.85 (3)	1.75 (3)	2.599 (3)	175 (4)
$\mathrm{O} 4 W-\mathrm{H} 4 B \cdots \mathrm{O} 7 W$	0.85 (3)	1.78 (2)	2.611 (5)	167 (4)
$\mathrm{O} 4 W-\mathrm{H} 4 B \cdots \mathrm{O} 7 W^{\prime}$	0.85 (3)	1.82 (3)	2.555 (8)	145 (4)
O5W-H5A \cdots O322	0.84 (4)	1.98 (4)	2.811 (4)	169 (4)
O5 W-H5B $\cdots \mathrm{O} 1 W$	0.85 (3)	1.93 (3)	2.768 (3)	175 (5)
O6 W-H6A \cdots O5 W	0.85 (4)	2.00 (2)	2.784 (4)	153 (4)
O6 W-H6B \cdots O352 ${ }^{\text {iii }}$	0.84 (3)	2.14 (3)	2.983 (3)	174 (4)
$\mathrm{O} 7 W-\mathrm{H} 7 A \cdots \mathrm{O} 6 W$	0.84 (1)	2.01 (4)	2.691 (5)	137 (5)
$\mathrm{O} 7 W-\mathrm{H} 7 B \cdots \mathrm{O} 342{ }^{\text {iii }}$	0.85 (1)	2.16 (5)	2.840 (4)	138 (6)
$\mathrm{O} 7 W^{\prime}-\mathrm{H} 7 A^{\prime} \ldots \mathrm{O} 6 W$	0.84 (1)	2.21 (9)	2.853 (9)	133 (11)
$\mathrm{O} 7 W^{\prime}-\mathrm{H} 7 B^{\prime} \cdots \mathrm{O} 342^{\text {iii }}$	0.84 (1)	1.84 (2)	2.677 (8)	174 (13)

Symmetry codes: (i) $x, 1+y, z$; (ii) $2-x,-1-y, 1-z$; (iii) $x-1,1+y, z$; (iv) $1-x,-y,-z$; (v) $x-1, y, z$.

Anisotropic refinement of water molecule $\mathrm{O} 7 W$ in a single position resulted in a large prolate displacement ellipsoid, so it was modelled in two positions, $\mathrm{O} 7 W$ and $\mathrm{O} 7 W^{\prime}$, with respective site-occupancy factors of 0.65 and 0.35 . Both $\mathrm{O} 7 W$ and $\mathrm{O} 7 W^{\prime}$ were refined with an isotropic displacement parameter. H atoms bound to C atoms were placed in calculated positions and allowed to ride during subsequent refinement, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Atom H322, associated with the uncoordinated carboxyl group, was placed so as to give the best hydrogen-bond geometry to O4W (HFIX 83 in SHELXTL; Bruker, 2001). The H atoms of the water molecules were located in difference Fourier maps, and were refined with $\mathrm{O}-\mathrm{H}$ distances restrained to 0.84 (1) \AA and $\mathrm{H} \cdots \mathrm{H}$ distances restrained to 1.37 (1) \AA; these restraints ensure a reasonable geometry for the water molecules. All H atoms bound to O atoms were refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: COLLECT (Nonius, 1998); cell refinement: $H K L$ SCALEPACK (Otwinowski \& Minor, 1997); data reduction: $H K L$

DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

We are grateful to the Portuguese Foundation for Science and Technology (FCT) for financial support through PhD scholarship No. SFRH/BD/3024/2000 (to FAAP), to the Cambridge Oppenheimer Fund for a research fellowship (to YZK), and to the EPSRC for funding (to ADB) and financial assistance towards the purchase of the Nonius KappaCCD diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1231). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1461-1494.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. \& Williams, I. D. (1999). Science, 283, 1148-1150.

Finnen, D. C., Pinkerton, A. A., Dunham, W. R., Sands, R. H. \& Funk, M. O. Jr (1991). Inorg. Chem. 30, 3960-3964.

Janiak, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 1431-1434.
Kagan, C. R., Mitzi, D. B. \& Dimitrakopoulos, C. D. (1999). Science, 286, 945947.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Seccombe, R. C., Lee, B. \& Henry, G. M. (1975). Inorg. Chem. 14, 1147-1154.
Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Leon, Y. J. \& Kim, K. (2000). Nature, 404, 982-986.
Tabellion, F. M., Seidel, S. R., Arif, A. M. \& Stang, P. J. (2001). Angew. Chem. Int. Ed. 40, 1529-1532.
Tao, J., Tong, M.-L. \& Chen, X.-M. (2000). J. Chem. Soc. Dalton. Trans. pp. 3669-3674.
Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.

